Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/16913

On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam)

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Let ∆ denote the discriminant of the generic binary d-ic. We show that for d ≥ 3, the Jacobian ideal of ∆ is perfect of height 2. Moreover we describe its SL2-equivariant minimal resolution and the associated differential equations satisfied by ∆. A similar result is proved for the resultant of two forms of orders d, e whenever d ≥ e − 1. If Φn denotes the locus of binary forms with total root multiplicity ≥ d − n, then we show that the ideal of Φn is also perfect, and we construct a covariant which characterizes this locus. We also explain the role of the Morley form in the determinantal formula for the resultant. This relies upon a calculation which is done in the appendix by A. Abdesselam.

Matèries (anglès)

Citació

Citació

D'ANDREA, Carlos, CHIPALKATTI, Jaydeep. On the Jacobian ideal of the binary discriminant (with an appendix by Abdelmalek Abdesselam). _Collectanea Mathematica_. 2007. Vol. 58, núm. 2, pàgs. 155-180. [consulta: 25 de gener de 2026]. ISSN: 0010-0757. [Disponible a: https://hdl.handle.net/2445/16913]

Exportar metadades

JSON - METS

Compartir registre