Optical emission from SiO2-embedded silicon nanocrystals: a high pressure Raman and photoluminescence study

dc.contributor.authorIbáñez i Insa, Jordi
dc.contributor.authorHernández Márquez, Sergi
dc.contributor.authorLópez Vidrier, Julià
dc.contributor.authorHiller, Daniel
dc.contributor.authorGutsch, Sebastian
dc.contributor.authorZacharias, Margit
dc.contributor.authorSegura, A.
dc.contributor.authorValenta, Jan
dc.contributor.authorGarrido Fernández, Blas
dc.date.accessioned2018-09-26T12:17:42Z
dc.date.available2018-09-26T12:17:42Z
dc.date.issued2015-07-27
dc.date.updated2018-09-26T12:17:42Z
dc.description.abstractWe investigate the optical properties of high-quality Si nanocrystals (NCs)/SiO2 multilayers under high hydrostatic pressure with Raman scattering and photoluminescence (PL) measurements. The aim of our study is to shed light on the origin of the optical emission of the Si NCs/SiO2. The Si NCs were produced by chemical-vapor deposition of Si-rich oxynitride (SRON)/SiO2 multilayers with 5- and 4-nm SRON layer thicknesses on fused silica substrates and subsequent annealing at 1150 °C, which resulted in the precipitation of Si NCswith an average size of 4.1 and 3.3 nm, respectively. From the pressure dependence of the Raman spectra we extract a phonon pressure coefficient of 8.5 ± 0.3 cm−1/GPa in both samples, notably higher than that of bulk Si (5.1 cm−1/GPa). This result is ascribed to a strong pressure amplification effect due to the larger compressibility of the SiO2 matrix. In turn, the PL spectra exhibit two markedly different contributions: a higher-energy band that redshifts with pressure, and a lower-energy band which barely depends on pressure and which can be attributed to defect-related emission. The pressure coefficients of the higher-energy contribution are (−27 ± 6) and (−35 ± 8) meV/GPa for the Si NCs with a size of 4.1 and 3.3 nm, respectively. These values are sizably higher than those of bulk Si (−14 meV/GPa). When the pressure amplification effect observed by Raman scattering is incorporated into the analysis of the PL spectra, it can be concluded that the pressure behavior of the high-energy PL band is consistent with that of the indirect transition of Si and, therefore, with the quantum-confined model for the emission of the Si NCs.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec653913
dc.identifier.issn2469-9950
dc.identifier.urihttps://hdl.handle.net/2445/124837
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevB.92.035432
dc.relation.ispartofPhysical Review B, 2015, vol. 92, num. 3, p. 035432
dc.relation.urihttps://doi.org/10.1103/PhysRevB.92.035432
dc.rights(c) American Physical Society, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationNanocristalls
dc.subject.classificationPropietats òptiques
dc.subject.otherNanocrystals
dc.subject.otherOptical properties
dc.titleOptical emission from SiO2-embedded silicon nanocrystals: a high pressure Raman and photoluminescence study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
653913.pdf
Mida:
780.65 KB
Format:
Adobe Portable Document Format