Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/101280
Coinage and Pt-group metal surfaces stability
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Coinable (Cu, Ni, Ag, Au) and Pt-group metals (Pt, Pd, Ir, Rh) are face centered cubic (fcc) transition metals used in catalysis as active phases, usually in the form of nanoparticles. These nanoparticles mostly expose most stable surfaces, which are the main responsible of the interaction with reagents.
Here we studied, by Density Functional Theory (DFT) calculations using slab models, the surface stability, in terms of surface energy, relaxation, degree of compression, and coordination number. The most stable surfaces studied are those with higher degree of compression and lowest Miller index, such as (111), (011), and (001) surfaces, which a priori are the most stable ones. Results were obtained, comparing and commenting two levels of computation, either using the Perdew-Burke-Ernzerhof (PBE) or the Tao-Perdew-Staroverov-Scuseria (TPSS) exchange-correlation functionals.
The results suggest that the surface energy shows the typically parabolic dependence on the d band occupation in transition metals. It is also found that (111) surface is the most stable one because of its higher degree of compression, lower energy relaxation and surface energy. Furthermore, TPSS functional gives better surface energies with higher accuracies yet the data are more difficult to obtain. In contrast, semi-empirical methods can only be used for qualitative studies as they are just good giving trends of surface energy
Descripció
Treballs Finals de Grau de Química, Facultat de Química, Universitat de Barcelona, Any: 2016, Tutor: Francesc Viñes Solana
Matèries (anglès)
Citació
Col·leccions
Citació
RUVIRETA JURADO, Judit. Coinage and Pt-group metal surfaces stability. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/101280]