A Hilbert-Mumford criterion for polystability in Kahler geometry
| dc.contributor.author | Mundet i Riera, Ignasi | |
| dc.date.accessioned | 2016-03-17T16:42:48Z | |
| dc.date.available | 2016-03-17T16:42:48Z | |
| dc.date.issued | 2010 | |
| dc.date.updated | 2016-03-17T16:42:53Z | |
| dc.description.abstract | Consider a Hamiltonian action of a compact Lie group $ K$ on a Kaehler manifold $ X$ with moment map $ \mu:X\to\mathfrak{k}^*$. Assume that the action of $ K$ extends to a holomorphic action of the complexification $ G$ of $ K$. We characterize which $ G$-orbits in $ X$ intersect $ \mu^{-1}(0)$ in terms of the maximal weights $ \lim_{t\to\infty}\langle\mu(e^{\mathbf{i} ts}\cdot x),s\rangle$, where $ s\in\mathfrak{k}$. We do not impose any a priori restriction on the stabilizer of $ x$. Under some mild restrictions on the action $ K\circlearrowright X$, we view the maximal weights as defining a collection of maps: for each $ x\in X$, $\displaystyle \lambda_x:\partial_{\infty}(K\backslash G)\to\mathbb{R}\cup\{\infty\},$ where $ \partial_{\infty}(K\backslash G)$ is the boundary at infinity of the symmetric space $ K\backslash G$. We prove that $ G\cdot x\cap\mu^{-1}(0)\neq\emptyset$ if: (1) $ \lambda_x$ is everywhere nonnegative, (2) any boundary point $ y$ such that $ \lambda_x(y)=0$ can be connected with a geodesic in $ K\backslash G$ to another boundary point $ y'$ satisfying $ \lambda_x(y')=0$. We also prove that the maximal weight functions are $ G$-equivariant: for any $ g\in G$ and any $ y\in \partial_{\infty}(K\backslash G)$ we have $ \lambda_{g\cdot x}(y)=\lambda_x(y\cdot g)$. | |
| dc.format.extent | 19 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 609881 | |
| dc.identifier.issn | 0002-9947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/96594 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-2010-04831-7 | |
| dc.relation.ispartof | Transactions of the American Mathematical Society, 2010, vol. 362, p. 5169-5187 | |
| dc.relation.uri | http://dx.doi.org/10.1090/S0002-9947-2010-04831-7 | |
| dc.rights | (c) American Mathematical Society (AMS), 2010 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Geometria algebraica | |
| dc.subject.classification | Geometria | |
| dc.subject.other | Algebraic geometry | |
| dc.subject.other | Geometry | |
| dc.title | A Hilbert-Mumford criterion for polystability in Kahler geometry | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1