Optimizing Product pricing and sales forecasting through advanced data science: a case study at Schneider Electric Iberia

dc.contributor.advisorAyala Mora, Enrique
dc.contributor.advisorHerrera Insuela, Marina
dc.contributor.authorSegura i Pons, Jordi
dc.date.accessioned2024-07-08T09:31:26Z
dc.date.available2024-07-08T09:31:26Z
dc.date.issued2023-06
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Enrique Ayala Mora i Marina Herrera Insuelaca
dc.description.abstractIn the increasingly competitive global business milieu, product pricing optimization and accurate sales forecasting are paramount. This MSc thesis probes these critical areas in relation to Schneider Electric Iberia, a front-runner in the digital conversion of energy management and automation. Our emphasis is on the adoption of cutting-edge data science methodologies, including econometrics, Machine Learning, causality analysis, and Deep Learning, with a goal to both predict sales and optimize price-points considering the demand elasticity of diverse products across various markets. The thesis initiates with an in-depth analysis of Schneider Electric’s extant pricing and sales forecasting systems, proceeding to the selection of suitable data science techniques for enhancement. Utilizing these methods, we devise and deploy a pricing optimization model aimed at augmenting revenue or sales volume. This model’s potential is then harnessed for sales forecasting, measuring its influence on the company’s operations in aspects like efficiency, profitability, and strategic decision-making amplifications. Our methodology pivots on comprehensive data collection, meticulous preprocessing, and insightful exploratory data analysis. We leverage the benefits of Graph Causal Models for price optimization and the innovative Temporal Fusion Transformer (TFT) for sales forecasting, conjuring a formidable tool for strategic planning. The optimized prices and predictive sales model converge on an interactive Tableau dashboard, endowing Schneider Electric Iberia with a user-friendly, accessible platform for data-driven decision making. This study aims to empower Schneider Electric Iberia, while also making a noteworthy contribution to the wider field of industrial technology and the deployment of AI in product pricing and sales forecasting.ca
dc.format.extent58 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/214427
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Jordi Segura i Pons, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationGestió de vendes
dc.subject.classificationPreus
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherSales management
dc.subject.otherPricing
dc.subject.otherMaster's thesis
dc.titleOptimizing Product pricing and sales forecasting through advanced data science: a case study at Schneider Electric Iberiaca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_segura_pons_jordi.pdf
Mida:
2.05 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria