Domain collapse and active site ablation generate a widespread animal mitochondrial seryl-tRNA synthetase

dc.contributor.authorPotter, Bastiaan de Potter,
dc.contributor.authorVallee, Ingrid
dc.contributor.authorCamacho, Noelia
dc.contributor.authorCosta Póvoas, Luís Filipe
dc.contributor.authorBonsembiante, Aureliano
dc.contributor.authorPons I Pons, Alba
dc.contributor.authorEckhard, Ulrich
dc.contributor.authorGomis Rüth, Francesc-Xavier
dc.contributor.authorYang, Xiang-Lei
dc.contributor.authorSchimmel, Paul
dc.contributor.authorKuhle, Bernhard
dc.contributor.authorRibas de Pouplana, Lluís
dc.date.accessioned2024-03-03T18:19:16Z
dc.date.available2024-03-03T18:19:16Z
dc.date.issued2023-08-28
dc.date.updated2024-03-01T13:28:27Z
dc.description.abstractThrough their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6601966
dc.identifier.issn1362-4962
dc.identifier.pmid37638745
dc.identifier.urihttps://hdl.handle.net/2445/208320
dc.language.isoeng
dc.publisherOxford University Press (OUP)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/nar/gkad696
dc.relation.ispartofNucleic Acids Research, 2023, vol. 51, num. 18, p. 10001-10010
dc.relation.urihttps://doi.org/10.1093/nar/gkad696
dc.rightscc by (c) de Potter, Bastiaan et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
dc.subject.classificationRNA
dc.subject.classificationEnzims
dc.subject.otherRNA
dc.subject.otherEnzymes
dc.titleDomain collapse and active site ablation generate a widespread animal mitochondrial seryl-tRNA synthetase
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
NAR_Ribas_2023.pdf
Mida:
1.37 MB
Format:
Adobe Portable Document Format