Atomic layer deposition of SnO2 and TiO2 on electrodeposited BiOI thin films for efficient light-driven peroxymonosulfate activationited BiOI thin films for efficient light-driven peroxymonosulfate activation

dc.contributor.authorHuidobro, Laura
dc.contributor.authorAbid, Mahmoud
dc.contributor.authorMaslouh, Haitham
dc.contributor.authorDemore, Arnaud
dc.contributor.authorBechelany, Mikhael
dc.contributor.authorGómez, Elvira
dc.contributor.authorSerrà i Ramos, Albert
dc.date.accessioned2025-09-02T17:29:59Z
dc.date.available2025-09-02T17:29:59Z
dc.date.issued2025-09
dc.date.updated2025-09-02T17:29:59Z
dc.description.abstractLight-driven peroxymonosulfate (PMS) activation is gaining traction as a green advanced oxidation strategy for degrading recalcitrant water pollutants; however, catalyst instability and sluggish charge separation still hinder its practical application. Here, we report for the first time the fabrication of ALD-engineered BiOI thin-film heterojunctions, coated with nanometric SnO2 or TiO2 layers (∼5 nm) and decorated with Pd nanoparticles (∼2 nm), which simultaneously enhance catalytic activity and stability. The BiOI/SnO2 and BiOI/TiO2 systems exhibit well-defined type-II band alignments, facilitating efficient interfacial charge transfer, while Pd nanoparticles form Schottky junctions that extract photogenerated electrons and mitigate BiOI photocorrosion. Using 20 ppm tetracycline (TC) at pH 7 as a model contaminant, TiO2-BiOI achieved 92.7 % TC removal and 84.8 % total organic carbon (TOC) mineralization within 90 min under UV-A light (365 nm) with 2.5 mM PMS. In contrast, SnO2-BiOI showed superior performance under simulated sunlight (λ > 400 nm), attaining 80.8 % degradation and 76.5 % mineralization. Radical scavenging assays revealed a threefold increase in sulfate and hydroxyl radical production compared to pristine BiOI. Pd modification reduced Bi and I leaching by more than 80 % after 360 min of continuous irradiation and preserved over 95 % of the photocatalytic activity across ten successive reuse cycles. This work establishes a modular ALD-based strategy to design stable semiconductor/oxide/metal nanointerfaces for wavelength-tunable PMS activation. The resulting thin-film catalysts, fabricated on FTO substrates with sub-nanometer precision, offer a scalable platform for solar-driven water purification and expand the material design space for sulfate-radical-based advanced oxidation processes.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec759353
dc.identifier.issn0264-1275
dc.identifier.urihttps://hdl.handle.net/2445/222919
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1016/j.matdes.2025.114375
dc.relation.ispartofMaterials & Design, 2025, vol. 257, num.114375
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.matdes.2025.114375
dc.rightscc-by (c) Huidobro, L. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationContaminació de l'aigua
dc.subject.classificationOxidació
dc.subject.classificationFotocatàlisi
dc.subject.otherWater pollution
dc.subject.otherOxidation
dc.subject.otherPhotocatalysis
dc.titleAtomic layer deposition of SnO2 and TiO2 on electrodeposited BiOI thin films for efficient light-driven peroxymonosulfate activationited BiOI thin films for efficient light-driven peroxymonosulfate activation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
896902.pdf
Mida:
6.84 MB
Format:
Adobe Portable Document Format