Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/124824
A new computational approach to ideal theory in number fields
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Let $K$ be the number field determined by a monic irreducible polynomial $f(x)$ with integer coefficients. In previous papers we parameterized the prime ideals of $K$ in terms of certain invariants attached to Newton polygons of higher order of the defining equation $f(x)$. In this paper we show how to carry out the basic operations on fractional ideals of $K$ in terms of these constructive representations of the prime ideals. From a computational perspective, these results facilitate the manipulation of fractional ideals of $K$ avoiding two heavy tasks: the construction of the maximal order of $K$ and the factorization of the discriminant of $f(x)$. The main computational ingredient is Montes algorithm, which is an extremely fast procedure to construct the prime ideals.
Matèries (anglès)
Citació
Citació
GUÀRDIA, Jordi, MONTES, Jesús, NART, Enric. A new computational approach to ideal theory in number fields. _Foundations of Computational Mathematics_. 2013. Vol. 13, núm. 5, pàgs. 729-762. [consulta: 20 de gener de 2026]. ISSN: 1615-3375. [Disponible a: https://hdl.handle.net/2445/124824]