Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195660

Data-driven decision making in Critique-based recommenders: from a critique to social media data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In the last decade there have been a large number of proposals in the field of Critique-based Recommenders. Critique-based recommenders are data-driven in their nature sincethey use a conversational cyclical recommendation process to elicit user feedback. In theliterature, the proposals made differ mainly in two aspects: in the source of data and in howthis data is analyzed to extract knowledge for providing users with recommendations. Inthis paper, we propose new algorithms that address these two aspects. Firstly, we propose anew algorithm, called HOR, which integrates several data sources, such as current user pref-erences (i.e., a critique), product descriptions, previous critiquing sessions by other users,and users' opinions expressed as ratings on social media web sites. Secondly, we propose adding compatibility and weighting scores to turn user behavior into knowledge to HOR and a previous state-of-the-art approach named HGR to help both algorithms make smarter recommendations. We have evaluated our proposals in two ways: with a simulator and withreal users. A comparison of our proposals with state-of-the-art approaches shows that thenew recommendation algorithms significantly outperform previous ones.

Citació

Citació

CONTRERAS, David, SALAMÓ LLORENTE, Maria. Data-driven decision making in Critique-based recommenders: from a critique to social media data. _Journal of Intelligent Information Systems_. 2020. Vol. 54, núm. 23-44. [consulta: 15 de gener de 2026]. ISSN: 0925-9902. [Disponible a: https://hdl.handle.net/2445/195660]

Exportar metadades

JSON - METS

Compartir registre