Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193773

Dyson type formula for pure jump Lévy processes with some applications to finance

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper we obtain a Dyson type formula for integrable functionals of a pure jump Lévy process. We represent the conditional expectation of a $\mathscr{F}_T$-measurable random variable $F$ at a time $t \leq T$ as an exponential formula involving Malliavin derivatives evaluated along a frozen path. The series representation of this exponential formula turns out to be useful for different applications, and in particular in quantitative finance, as we show in the following examples: the first one is the pricing of options in the Poisson-Black-Scholes model; the second one is the pricing of discount bonds in the Lévy quadratic model. We also obtain, for the conditional expectation of a function of a finite number of the process values, a backward Taylor expansion, that turns out to be useful for numerical calculations.

Citació

Citació

JIN, Sixian, SCHELLHORN, Henry, VIVES I SANTA EULÀLIA, Josep. Dyson type formula for pure jump Lévy processes with some applications to finance. _Stochastic Processes and their Applications_. 2020. Vol. 130, núm. 2, pàgs. 824-844. [consulta: 24 de gener de 2026]. ISSN: 0304-4149. [Disponible a: https://hdl.handle.net/2445/193773]

Exportar metadades

JSON - METS

Compartir registre