El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Towards equitable deep learning in dermatology: assessing lesion classification fairness across skin tones

dc.contributor.advisorDíaz, Oliver
dc.contributor.advisorOsuala, Richard
dc.contributor.authorKalb López, Thorsten Albert
dc.date.accessioned2024-07-04T06:14:15Z
dc.date.available2024-07-04T06:14:15Z
dc.date.issued2023-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Oliver Díaz i Richard Osualaca
dc.description.abstractRecent advances in deep learning skin lesion classifiers rose expectations that these models can be implemented in the clinical routine in the near future. However, before deploying deep learning models in such a sensitive area as healthcare, it is important to ensure their trustworthiness and mitigate any kind of discrimination. This thesis investigates discrimination by skin tone in a light-weight deep learning skin lesion classifier trained on a benchmark dataset of dermatological images and assesses the feasibility of SinGAN-generated synthetic dark skin images to improve predictions on dark skin samples in the absence of dark skin training data. The results suggest that (I) there is discrimination by skin tone, (II) a data shift from apparent light skin samples in training to apparent dark skin samples in deployment deteriorates predictions, and (III) although dark SinGAN-generated samples may improve performance, oversampling of a few dark skin samples appears more feasible. Most importantly, however, a thorough analysis of automated skin tone estimations with the Individual Topology Angle revealed that (IV) these skin tone estimations might measure the darkness of a skin image rather than the darkness of skin in the image and (V) the investigated HAM10000 dataset is less diverse than previous research suggested. This has potentially wide-ranging implications for previous publications about skin tone fairness using this dataset and emphasizes the need for further research on more diverse dermatology datasets with more reliable skin tone labels before wide-spread deployment of skin lesion classifiers.ca
dc.format.extent49 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/214280
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Thorsten Albert Kalb López, 2023
dc.rightscodi: GPL (c) Thorsten Albert Kalb López, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationMalalties de la pell
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationDiagnòstic per la imatgeca
dc.subject.otherMachine learning
dc.subject.otherSkin diseases
dc.subject.otherLearning classifier systems
dc.subject.otherMaster's thesis
dc.subject.otherDiagnostic imagingen
dc.titleTowards equitable deep learning in dermatology: assessing lesion classification fairness across skin tonesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_kalb_lopez_thorsten_albert.pdf
Mida:
11.53 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
SkinFairHAM-main.zip
Mida:
6.09 MB
Format:
ZIP file
Descripció:
Codi font