Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/7765

Periodic points of holomorphic maps via Lefschetz numbers

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this paper we study the set of periods of holomorphic maps on compact manifolds, using the periodic Lefschetz numbers introduced by Dold and Llibre, which can be computed from the homology class of the map. We show that these numbers contain information about the existence of periodic points of a given period; and, if we assume the map to be transversal, then they give us the exact number of such periodic orbits. We apply this result to the complex projective space of dimension n and to some special type of Hopf surfaces, partially characterizing their set of periods. In the first case we also show that any holomorphic map of CP(n) of degree greater than one has infinitely many distinct periodic orbits, hence generalizing a theorem of Fornaess and Sibony. We then characterize the set of periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof of Baker's theorem.

Citació

Citació

FAGELLA RABIONET, Núria, LLIBRE, Jaume. Periodic points of holomorphic maps via Lefschetz numbers. _Transactions of the American Mathematical Society_. 2000. Vol. 352, núm. 10, pàgs. 4711-4730. [consulta: 7 de febrer de 2026]. ISSN: 1088-6850. [Disponible a: https://hdl.handle.net/2445/7765]

Exportar metadades

JSON - METS

Compartir registre