Comparison of the procedures of Fleishman and Ramberg et al. for generating non normal data in simulation studies

dc.contributor.authorBendayan, Rebecca
dc.contributor.authorArnau Gras, Jaume
dc.contributor.authorBlanca Mena, M. José
dc.contributor.authorBono Cabré, Roser
dc.date.accessioned2017-07-24T19:41:16Z
dc.date.available2017-07-24T19:41:16Z
dc.date.issued2014
dc.date.updated2017-07-24T19:41:17Z
dc.description.abstractSimulation techniques must be able to generate the types of distributions most commonly encountered in real data, for example, non-normal distributions. Two recognized procedures for generating non-normal data are Fleishman's linear transformation method and the method proposed by Ramberg et al. that is based on generalization of the Tukey lambda distribution. This study compares these procedures in terms of the extent to which the distributions they generate fit their respective theoretical models, and it also examines the number of simulations needed to achieve this fit. To this end, the paper considers, in addition to the normal distribution, a series of non-normal distributions that are commonly found in real data, and then analyses fit according to the extent to which normality is violated and the number of simulations performed. The results show that the two data generation procedures behave similarly. As the degree of contamination of the theoretical distribution increases, so does the number of simulations required to ensure a good fit to the generated data. The two procedures generate more accurate normal and non-normal distributions when at least 7000 simulations are performed, although when the degree of contamination is severe (with values of skewness and kurtosis of 2 and 6, respectively) it is advisable to perform 15000 simulations.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec621869
dc.identifier.issn0212-9728
dc.identifier.urihttps://hdl.handle.net/2445/114262
dc.language.isoeng
dc.publisherUniversidad de Murcia
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.6018/analesps.30.1.135911
dc.relation.ispartofAnales de Psicología, 2014, vol. 30, num. 1, p. 364-371
dc.relation.urihttps://doi.org/10.6018/analesps.30.1.135911
dc.rightscc-by-nc-nd (c) Universidad de Murcia, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Psicologia Social i Psicologia Quantitativa)
dc.subject.classificationMètodes de simulació
dc.subject.classificationMètode de Montecarlo
dc.subject.otherSimulation methods
dc.subject.otherMonte Carlo method
dc.titleComparison of the procedures of Fleishman and Ramberg et al. for generating non normal data in simulation studies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
621869.pdf
Mida:
382.41 KB
Format:
Adobe Portable Document Format