Some moduli spaces for rank 2 reflexive sheaves on $ {{\mathbf{P}}^3}$

dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)
dc.date.accessioned2016-02-24T08:51:59Z
dc.date.available2016-02-24T08:51:59Z
dc.date.issued1987
dc.date.updated2016-02-24T08:52:04Z
dc.description.abstractIn [Ma], Maruyama proved that the set $ M({c_1},{c_2},{c_3})$ of isomorphism classes of rank $ 2$ stable reflexive sheaves on $ {{\mathbf{P}}^3}$ with Chern classes $ ({c_1},{c_2},{c_3})$ has a natural structure as an algebraic scheme. Until now, there are no general results about these schemes concerning dimension, irreducibility, rationality, etc. and only in a few cases a precise description of them is known. This paper is devoted to the following cases: (i) $ M( - 1,{c_2},c_2^2 - 2r{c_2} + 2r(r + 1))$ with $ {c_2} \geqslant 4$, $ 1 \leqslant r \leqslant ( - 1 + \sqrt {4{c_2} - 7} )/2$; and (ii) $ M( - 1,{c_2},c_2^2 - 2(r - 1){c_2})$ with $ {c_2} \geqslant 8$, $ 2 \leqslant r \leqslant ( - 1 + \sqrt {4{c_2} - 7} )/2$.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec008619
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/95817
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-1987-0869229-0
dc.relation.ispartofTransactions of the American Mathematical Society, 1987, vol. 299, num. 2, p. 699-717
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-1987-0869229-0
dc.rights(c) American Mathematical Society (AMS), 1987
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraica
dc.subject.classificationHomologia
dc.subject.otherAlgebraic geometry
dc.subject.otherHomology
dc.titleSome moduli spaces for rank 2 reflexive sheaves on $ {{\mathbf{P}}^3}$
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
008619.pdf
Mida:
1.35 MB
Format:
Adobe Portable Document Format