Machine learning algorithms to the early diagnosis of fetal alcohol spectrum disorders

dc.contributor.authorRamos-Triguero, Anna
dc.contributor.authorNavarro Tapia, Elisabet
dc.contributor.authorVieiros, Melina
dc.contributor.authorMirahi, Afrooz
dc.contributor.authorAstals Vizcaíno, Marta
dc.contributor.authorAlmela, Lucas
dc.contributor.authorMartinez, Leopoldo
dc.contributor.authorGarcía Algar, Óscar
dc.contributor.authorAndreu Fernández, Vicente
dc.date.accessioned2024-06-18T19:10:05Z
dc.date.available2024-06-18T19:10:05Z
dc.date.issued2024-05-06
dc.date.updated2024-06-18T19:10:10Z
dc.description.abstractIntroduction: Fetal alcohol spectrum disorders include a variety of physical and neurocognitive disorders caused by prenatal alcohol exposure. Although their overall prevalence is around 0.77%, FASD remains underdiagnosed and little known, partly due to the complexity of their diagnosis, which shares some symptoms with other pathologies such as autism spectrum, depression or hyperactivity disorders. <strong>Methods: </strong>This study included control and patients diagnosed with FASD. Variables selected were based on IOM classification, including sociodemographic, clinical, and psychological characteristics. Statistical analysis included KruskalWallis test for quantitative factors, Chi square test for qualitative variables, and Machine Learning (ML) algorithms for predictions. <strong>Results: </strong>This study explores the application ML in diagnosing FASD and its subtypes: Fetal Alcohol Syndrome (FAS), partial FAS (pFAS), and Alcohol Related Neurodevelopmental Disorder (ARND). ML constructed a profile for FASD based onsociodemographic,clinical, and psychological data from children with FASD compared to a control group. Random Forest (RF) model was the most efficient for predicting FASD, achieving the highest metrics in accuracy (0.92), precision (0.96), sensitivity (0.92), F1 Score (0.94), specificity (0.92), and AUC (0.92). For FAS, XGBoost model obtained the highest accuracy (0.94), precision (0.91), sensitivity (0.91), F1 Score (0.91), specificity (0.96), and AUC (0.93). In the case of pFAS, RF model showed its effectiveness, with high levels of accuracy (0.90), precision (0.86), sensitivity (0.96), F1 Score (0.91), specificity (0.83), and AUC (0.90). For ARND, RF model obtained the best levels of accuracy (0.87), precision (0.76), sensitivity (0.93), F1 Score (0.84), specificity (0.83), and AUC (0.88). Our study identified key variables for e cient FASD screening, including traditional clinical characteristics like maternal alcohol consumption, lipphiltrum, microcephaly, height and weight impairment, as well as neuropsychological variables such as the Working Memory Index (WMI), aggressive behavior, IQ, somatic complaints, and depressive problems. <strong>Discussion: </strong>Our findings emphasize the importance of ML analyses for early diagnoses of FASD, allowing a better understanding of FASD subtypes to potentially improve clinical practice and avoid misdiagnosis.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec748405
dc.identifier.issn1662-4548
dc.identifier.pmid38808031
dc.identifier.urihttps://hdl.handle.net/2445/213333
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3389/fnins.2024.1400933
dc.relation.ispartofFrontiers in Neuroscience, 2024, vol. 6, num.18
dc.relation.urihttps://doi.org/10.3389/fnins.2024.1400933
dc.rightscc-by (c) Ramos-Triguero, A. et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Cirurgia i Especialitats Medicoquirúrgiques)
dc.subject.classificationAlcohol
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationDiagnòstic prenatal
dc.subject.classificationMalalties del fetus
dc.subject.classificationManifestacions neurològiques de les malalties
dc.subject.otherAlcohol
dc.subject.otherMachine learning
dc.subject.otherPrenatal diagnosis
dc.subject.otherFetus diseases
dc.subject.otherNeurologic manifestations of general diseases
dc.titleMachine learning algorithms to the early diagnosis of fetal alcohol spectrum disorders
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
860569.pdf
Mida:
1.61 MB
Format:
Adobe Portable Document Format