El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Integrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks

dc.contributor.authorMenesse, Gustavo
dc.contributor.authorHouben, Akke Mats
dc.contributor.authorSoriano i Fradera, Jordi
dc.contributor.authorTorres, Joaquín J.
dc.date.accessioned2025-07-11T15:32:20Z
dc.date.available2025-07-11T15:32:20Z
dc.date.issued2024-05-01
dc.date.updated2025-07-11T15:32:20Z
dc.description.abstractThe properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological  information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Phi-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Phi-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec749529
dc.identifier.issn1054-1500
dc.identifier.urihttps://hdl.handle.net/2445/222184
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/5.0201454
dc.relation.ispartofChaos, 2024, vol. 34, num.5
dc.relation.urihttps://doi.org/10.1063/5.0201454
dc.rights(c) American Institute of Physics (AIP), 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationNeurociències
dc.subject.classificationEntropia (Teoria de la informació)
dc.subject.classificationSimulació per ordinador
dc.subject.otherNeurosciences
dc.subject.otherEntropy (Information theory)
dc.subject.otherComputer simulation
dc.titleIntegrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
863796.pdf
Mida:
3.64 MB
Format:
Adobe Portable Document Format