Bioengineering fascicle-like skeletal muscle bioactuators via pluronic-assisted co-axial 3D bioprinting (PACA-3D)

dc.contributor.authorFuentes Llanos, Judith
dc.contributor.authorMestre Castillo, Rafael
dc.contributor.authorGuix Noguera, Maria
dc.contributor.authorEsporrín Ubieto, David
dc.contributor.authorGhailan Tribak, Ibtissam
dc.contributor.authorRuiz González, Noelia
dc.contributor.authorPatiño Padial, Tania
dc.contributor.authorSánchez Ordóñez, Samuel
dc.date.accessioned2025-07-07T07:44:50Z
dc.date.available2025-07-07T07:44:50Z
dc.date.issued2025-06-06
dc.date.updated2025-07-03T12:06:12Z
dc.description.abstractAdvances in 3D bioprinting have opened new possibilities for developing bioengineered muscle models that can mimic the architecture and function of native tissues. However, current bioengineering approaches do not fully recreate the complex fascicle-like hierarchical organization of the skeletal muscle tissue, impacting on the muscle maturation due to the lack of oxygen and nutrient supply in the scaffold inner regions. A key challenge is the production of precise and width-controlled independent filaments that do not fuse during the printing process when subsequently extruded, ensuring the formation of fascicle-like structures. This study addresses the limitation of filament fusion by utilizing a pluronic-assisted co-axial 3D bioprinting system (PACA-3D) creates a physical confinement of the bioink during the extrusion process, effectively obtaining thin and independent printed filaments with controlled shapes. The use of PACA-3D enabled the fabrication of skeletal muscle-based bioactuators with improved cell differentiation and significantly increased force output, obtaining 3 times stronger bioengineered muscle when compared to bioactuators fabricated using conventional 3D extrusion bioprinting techniques, where a single syringe containing the bioink is used. The versatility of our technology has been demonstrated using different biomaterials, demonstrating its potential to develop more complex biohybrid tissue-based architectures with improved functionality, as well as aiming for better scalability and printing flexibility.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina6743484
dc.identifier.issn1758-5090
dc.identifier.pmid40409298
dc.identifier.urihttps://hdl.handle.net/2445/222025
dc.language.isoeng
dc.publisherInstitute of Physics Pub.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1088/1758-5090/addc9b
dc.relation.ispartofBiofabrication 2025, vol. 17, num. 3
dc.relation.urihttps://doi.org/10.1088/1758-5090/addc9b
dc.rightscc-by (c) Fuentes Llanos et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationEnginyeria de teixits
dc.subject.classificationImpressió 3D
dc.subject.classificationMaterials biomèdics
dc.subject.otherTissue engineering
dc.subject.otherThree-dimensional printing
dc.subject.otherBiomedical materials
dc.titleBioengineering fascicle-like skeletal muscle bioactuators via pluronic-assisted co-axial 3D bioprinting (PACA-3D)
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
2025_Biofabrication_Bioengineering_SanchezS.pdf
Mida:
3.53 MB
Format:
Adobe Portable Document Format