Machine learning for iron oxide identification from oxygen K edge in EELS spectra

dc.contributor.advisorEstradé Albiol, Sònia
dc.contributor.advisorPozo Bueno, Daniel del
dc.contributor.authorRoset Tomàs, Marc
dc.date.accessioned2021-10-29T13:14:37Z
dc.date.available2021-10-29T13:14:37Z
dc.date.issued2021-07
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutors: Sònia Estradé, Daniel Del Pozo Buenoca
dc.description.abstractIn this work we test machine learning tools such as the Support Vector Machine algorithm and neural network models on the task of Electron Energy-Loss Spectroscopy (EELS) spectra classification. Given many sample spectra of EELS applied on wüstite and magnetite nanocubes, we train both models to determine the oxidation state of iron. We show that SMV exhibits a good performance on classifying clean data, and we demonstrate the capability of neural networks of producing robust results given shifted dataca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/180920
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Roset, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electronscat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherElectron energy loss spectroscopyeng
dc.subject.otherBachelor's theseseng
dc.titleMachine learning for iron oxide identification from oxygen K edge in EELS spectraeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
ROSET TOMÀS MARC_4253527_assignsubmission_file_TFG-Roset-Tomas-Marc.pdf
Mida:
327.89 KB
Format:
Adobe Portable Document Format
Descripció: