Photocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: evidence for direct formation of reactive halogen species and halogenated by-products

dc.contributor.authorPorcar Santos, Oriol
dc.contributor.authorCruz Alcalde, Alberto
dc.contributor.authorLópez Vinent, Núria
dc.contributor.authorZanganas, Dimitrios
dc.contributor.authorSans Mazón, Carme
dc.date.accessioned2020-06-09T06:53:04Z
dc.date.available2022-05-26T05:10:18Z
dc.date.issued2020-05-26
dc.date.updated2020-06-09T06:53:04Z
dc.description.abstractNowadays photoactivation mechanism of titanium dioxide nanoparticles (TiO2 NPs) and reactive species involved in saline waters is not sufficiently established. In this study, TiO2 photocatalytic process under simulated solar irradiation was evaluated in synthetic seawater and compared with deionized water, using sulfamethoxazole (SMX) as model organic compound. For a TiO2 concentration of 100 mg L−1, SMX degradation resulted two times slower in seawater than in deionizedwater by the determination of their pseudo-first order rate constants of 0.020 min−1 and 0.041 min−1, respectively. Selected scavenging experiments revealed no significant contribution of hydroxyl radicals (¿OH) on the degradation process in seawater, while these radicals contributed to circa 60% on theSMX depletion in deionizedwater. Instead, the involvement of reactive halogen species (RHS) asmain contributors for the SMX degradation in seawater could be established. A mechanism for the RHS generationwas proposed, whose initiation reactions involve halides with the TiO2 photogenerated holes, yielding chlorine and bromine radicals (Cl¿ and Br¿) that may later generate other RHS. Production of RHS was further confirmed by the identification of SMX transformation products (TPs) and their evolution over time, carried out by liquid chromatography-mass spectrometry (LC-MS). SMX transformationwas conducted through halogenation, dimerization and oxidation pathways, involving mainly RHS. Most of the detected transformation products accumulated over time (up to 360 min of irradiation). These findings bring concerns about the viability of photocatalytic water treatments using TiO2 NPs in saline waters, as RHS could be yielded resulting in the generation and accumulation of halogenated organic byproducts.
dc.format.extent30 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec701415
dc.identifier.issn0048-9697
dc.identifier.urihttps://hdl.handle.net/2445/164858
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.scitotenv.2020.139605
dc.relation.ispartofScience of the Total Environment, 2020, vol. 736, num. 139605
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2020.139605
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationFotocatàlisi
dc.subject.classificationAigua salada
dc.subject.classificationDiòxid de titani
dc.subject.classificationNanopartícules
dc.subject.otherPhotocatalysis
dc.subject.otherSaline waters
dc.subject.otherTitanium dioxide
dc.subject.otherNanoparticles
dc.titlePhotocatalytic degradation of sulfamethoxazole using TiO2 in simulated seawater: evidence for direct formation of reactive halogen species and halogenated by-products
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
701415.pdf
Mida:
1.42 MB
Format:
Adobe Portable Document Format