Towards routine discovery from egocentric photostreams

dc.contributor.advisorTalavera Martínez, Estefanía
dc.contributor.authorBevzenko, Alexander
dc.date.accessioned2019-09-30T09:08:59Z
dc.date.available2019-09-30T09:08:59Z
dc.date.issued2019-02-01
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Estefanía Talaveraca
dc.description.abstract[en] When I was thinking what topic to choose and what work would it be. On the one hand I wanted it to be from the area that is particularly interesting and I can use my knowledge. On the other hand I wanted to study something new and exciting. This work exceeded my expectations. In this work I apply all my skills developed during my education in University of Barcelona to work on real scientific case. I do my research reading many papers on topic, develop methods that suit my case, brainstorm new ideas, spend hours coding and debugging them, spend days waiting calculations to finish and finally - obtain results I’m satisfied with. This work is about turning 106 days and 70GB of egocentric photostreams into a simple predictions if a particular day is a routine or no.ca
dc.format.extent67 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/141237
dc.language.isoengca
dc.rightsmemòria: cc-by-nc-sa (c) Alexander Bevzenko, 2019
dc.rightscodi: GPL (c) Alexander Bevzenko, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)ca
dc.subject.classificationCàmeres de vídeo digitalsca
dc.subject.otherDigital image processingen
dc.subject.otherMachine learningen
dc.subject.otherComputer softwareen
dc.subject.otherLearning classifier systemsen
dc.subject.otherDigital video camerasen
dc.subject.otherBachelor's thesesen
dc.titleTowards routine discovery from egocentric photostreamsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
394.24 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
5.29 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria