Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172675

Effect of nanoparticles in molten salts - MD simulations and experimental study

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Highlighted experimental studies on nanofluids reveal an anomalous increment in the specific heat capacity (Cp) of these ionic systems when nanoparticles are added. This fact is really important due the applicability of nanofluids in concentrating solar power plants as heat transfer fluid and storage media. These are promising results for the development of high-temperature heat storage applications by enhanced storage capacity materials. The present work focuses on the study of this effect in NaNO3 molten salt doped with SiO2 nanoparticles by molecular dynamics (MD) simulations and Differential Scanning Calorimetry (DSC) experiments. The study shows that for nanoparticles' concentrations around 1% wt. the Cp increases by 26% compared to pure NaNO3, whereas at higher concentrations the effect disappears. The results approach high agreement between experimental and simulation results and MD simulations reveal that the increase of Cp at low concentrations is explained by the formation of a semi ordered layer of ionic fluid. This layer is rich in Naþ cations, around the nanoparticles whereas the reduction of Cp at concentrations higher than 2% wt. is related to the aggregation of nanoparticles as revealed by Scanning Electron Microscopy (SEM). However, deep experimental results with other materials will be required in order to validate the layering effect.

Matèries (anglès)

Citació

Citació

SVOBODOVA SEDLACKOVA, Adela, BARRENECHE, Camila, ALONSO, Gerard, FERNÁNDEZ RENNA, Ana inés, GAMALLO BELMONTE, Pablo. Effect of nanoparticles in molten salts - MD simulations and experimental study. _Renewable Energy_. 2020. Vol. 152, núm. 208-216. [consulta: 23 de gener de 2026]. ISSN: 0960-1481. [Disponible a: https://hdl.handle.net/2445/172675]

Exportar metadades

JSON - METS

Compartir registre