Identifying strategies to target the metabolic flexibility of tumours

dc.contributor.authorMéndez-Lucas, Andrés
dc.contributor.authorLin, Wei
dc.contributor.authorDriscoll, Paul C.
dc.contributor.authorLegrave, Nathalie
dc.contributor.authorNovellasdemunt, Laura
dc.contributor.authorXie, Chencheng
dc.contributor.authorCharles, Mark
dc.contributor.authorWilson, Zena
dc.contributor.authorJones, Neil P.
dc.contributor.authorRayport, Stephen
dc.contributor.authorRodríguez Justo, Manuel
dc.contributor.authorLi, Vivian
dc.contributor.authorMacRae, James I.
dc.contributor.authorHay, Nissim
dc.contributor.authorChen, Xin
dc.contributor.authorYuneva, Mariia
dc.date.accessioned2022-06-01T17:15:56Z
dc.date.available2022-06-01T17:15:56Z
dc.date.issued2020-04-21
dc.date.updated2022-06-01T17:15:56Z
dc.description.abstractPlasticity of cancer metabolism can be a major obstacle to efficient targeting of tumour-specific metabolic vulnerabilities. Here, we identify the compensatory mechanisms following the inhibition of major pathways of central carbon metabolism in c-MYC-induced liver tumours. We find that, while inhibition of both glutaminase isoforms (Gls1 and Gls2) in tumours considerably delays tumourigenesis, glutamine catabolism continues, owing to the action of amidotransferases. Synergistic inhibition of both glutaminases and compensatory amidotransferases is required to block glutamine catabolism and proliferation of mouse and human tumour cells in vitro and in vivo. Gls1 deletion is also compensated for by glycolysis. Thus, co-inhibition of Gls1 and hexokinase 2 significantly affects Krebs cycle activity and tumour formation. Finally, the inhibition of biosynthesis of either serine (Psat1-KO) or fatty acid (Fasn-KO) is compensated for by uptake of circulating nutrients, and dietary restriction of both serine and glycine or fatty acids synergistically suppresses tumourigenesis. These results highlight the high flexibility of tumour metabolism and demonstrate that either pharmacological or dietary targeting of metabolic compensatory mechanisms can improve therapeutic outcomes.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec709870
dc.identifier.issn2522-5812
dc.identifier.urihttps://hdl.handle.net/2445/186243
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s42255-020-0195-8
dc.relation.ispartofNature Metabolism, 2020, vol. 2, num. 4, p. 335-350
dc.relation.urihttps://doi.org/10.1038/s42255-020-0195-8
dc.rights(c) Méndez-Lucas, Andrés et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)
dc.subject.classificationTumors
dc.subject.classificationÀcids grassos
dc.subject.classificationMetabolisme
dc.subject.otherTumors
dc.subject.otherFatty acids
dc.subject.otherMetabolism
dc.titleIdentifying strategies to target the metabolic flexibility of tumours
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
709870.pdf
Mida:
7.23 MB
Format:
Adobe Portable Document Format