Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/7783

Determinacy and Weakly Ramsey sets in Banach spaces

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

We give a sufficient condition for a set of block subspaces in an infinite-dimensional Banach space to be weakly Ramsey. Using this condition we prove that in the Levy-collapse of a Mahlo cardinal, every projective set is weakly Ramsey. This, together with a construction of W. H. Woodin, is used to show that the Axiom of Projective Determinacy implies that every projective set is weakly Ramsey. In the case of co we prove similar results for a stronger Ramsey property. And for hereditarily indecomposable spaces we show that the Axiom of Determinacy plus the Axiom of Dependent Choices imply that every set is weakly Ramsey. These results are the generalizations to the class of projective sets of some theorems from W. T. Gowers, and our paper "Weakly Ramsey sets in Banach spaces."

Citació

Citació

BAGARIA, Joan, LÓPEZ ABAD, Jordi. Determinacy and Weakly Ramsey sets in Banach spaces. _Transactions of the American Mathematical Society_. 2002. Vol. 354, núm. 4, pàgs. 1327-1349. [consulta: 27 de gener de 2026]. ISSN: 1088-6850. [Disponible a: https://hdl.handle.net/2445/7783]

Exportar metadades

JSON - METS

Compartir registre