Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/144078
Multiscale unfolding of real networks by geometric renormalization
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
Matèries
Matèries (anglès)
Citació
Citació
GARCÍA PÉREZ, Guillermo, BOGUÑÁ, Marián, SERRANO MORAL, Ma. ángeles (maría ángeles). Multiscale unfolding of real networks by geometric renormalization. _Nature Physics_. 2018. Vol. 14, núm. 583-589. [consulta: 23 de gener de 2026]. ISSN: 1745-2473. [Disponible a: https://hdl.handle.net/2445/144078]