The force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening.

dc.contributor.authorAndreu, Ion
dc.contributor.authorFalcones, Bryan
dc.contributor.authorHurst, Sebastian
dc.contributor.authorChahare, Nimesh
dc.contributor.authorQuiroga, Xarxa
dc.contributor.authorRoux, Anabel-Lise Le
dc.contributor.authorKechagia, Zanetta
dc.contributor.authorBeedle, Amy E. M.
dc.contributor.authorElosegui Artola, Alberto
dc.contributor.authorTrepat Guixer, Xavier
dc.contributor.authorFarré Ventura, Ramon
dc.contributor.authorBetz, Timo
dc.contributor.authorAlmendros López, Isaac
dc.contributor.authorRoca-Cusachs Soulere, Pere
dc.date.accessioned2021-12-23T17:50:40Z
dc.date.available2021-12-23T17:50:40Z
dc.date.issued2021-07-01
dc.date.updated2021-12-23T17:50:40Z
dc.description.abstractCell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec715125
dc.identifier.idimarina6525840
dc.identifier.issn2041-1723
dc.identifier.pmid34244477
dc.identifier.urihttps://hdl.handle.net/2445/182017
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-021-24383-3
dc.relation.ispartofNature Communications, 2021, vol. 12, num. 1
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731957/EU//MECHANO-CONTROL
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/771201/EU//PolarizeMe
dc.relation.urihttps://doi.org/10.1038/s41467-021-24383-3
dc.rightscc-by (c) Andreu, Ion et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationBiomecànica
dc.subject.classificationBiologia molecular
dc.subject.otherBiomechanics
dc.subject.otherMolecular biology
dc.titleThe force loading rate drives cell mechanosensing through both reinforcement and cytoskeletal softening.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
715125.pdf
Mida:
3.55 MB
Format:
Adobe Portable Document Format