Aggregating Value Systems for Decision Support

dc.contributor.authorLera Leri, Roger Xavier
dc.contributor.authorLiscio, Enrico
dc.contributor.authorBistaffa, Filippo
dc.contributor.authorJonker, Catholijn Maria
dc.contributor.authorLópez Sánchez, Maite
dc.contributor.authorMurukannaiah, Pradeep Kumar
dc.contributor.authorRodríguez Aguilar, Juan Antonio
dc.contributor.authorSalas Molina, Francisco
dc.date.accessioned2025-01-20T10:24:17Z
dc.date.available2025-01-20T10:24:17Z
dc.date.issued2024-03-05
dc.date.updated2025-01-20T10:24:17Z
dc.description.abstractWe adopt an emerging and prominent vision of human-centred Artificial Intelligence that requires building trustworthy intelligent systems. Such systems should be capable of dealing with the challenges of an interconnected globalised world by handling plurality and by abiding to human values. Within this vision, pluralistic value alignment is a core problem for AI - that is, the challenge of creating AI systems that align with a set of diverse individual value systems. So far, most literature on value-alignment has considered alignment to a single value system. To address this research gap, we propose a novel method for the estimation and aggregation of multiple individual value systems. We rely on recent results in the social choice literature and formalise the value system aggregation problem as an optimisation problem. We then cast this problem as an $\ell_p$-regression problem. By doing so, we provide a principled and general theoretical framework to model and solve the aggregation problem. Our aggregation method allows us to consider a range of ethical principles, from utilitarian (maximum utility) to egalitarian (maximum fairness). We illustrate the aggregation of value systems by considering real-world data of two case studies: the Participatory Value Evaluation process, and the European Values Study. Our experimental evaluation shows how different consensus value systems can be obtained depending on the ethical principle of choice, leading to practical insights for a decision-maker on how to perform value system aggregation.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec741674
dc.identifier.issn0950-7051
dc.identifier.urihttps://hdl.handle.net/2445/217663
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.knosys.2024.111453
dc.relation.ispartofKnowledge-Based Systems, 2024, vol. 287
dc.relation.urihttps://doi.org/10.1016/j.knosys.2024.111453
dc.rightscc-by-nc-nd (c) Roger Xavier Lera Leri et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÈtica
dc.subject.classificationOptimització matemàtica
dc.subject.classificationIntel·ligència artificial
dc.subject.otherEthics
dc.subject.otherMathematical optimization
dc.subject.otherArtificial intelligence
dc.titleAggregating Value Systems for Decision Support
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
839642.pdf
Mida:
1.23 MB
Format:
Adobe Portable Document Format