From Boltzmann to Zipf through Shannon and Jaynes

dc.contributor.authorCorral, Álvaro
dc.contributor.authorGarcía del Muro y Solans, Montserrat
dc.date.accessioned2021-02-08T13:40:41Z
dc.date.available2021-02-08T13:40:41Z
dc.date.issued2020-02-05
dc.date.updated2021-02-08T13:40:41Z
dc.description.abstractThe word-frequency distribution provides the fundamental building blocks that generate discourse in natural language. It is well known, from empirical evidence, that the word-frequency distribution of almost any text is described by Zipf's law, at least approximately. Following Stephens and Bialek (2010), we interpret the frequency of any word as arising from the interaction potentials between its constituent letters. Indeed, Jaynes' maximum-entropy principle, with the constrains given by every empirical two-letter marginal distribution, leads to a Boltzmann distribution for word probabilities, with an energy-like function given by the sum of the all-to-all pairwise (two-letter) potentials. The so-called improved iterative-scaling algorithm allows us finding the potentials from the empirical two-letter marginals. We considerably extend Stephens and Bialek's results, applying this formalism to words with length of up to six letters from the English subset of the recently created Standardized Project Gutenberg Corpus. We find that the model is able to reproduce Zipf's law, but with some limitations: the general Zipf's power-law regime is obtained, but the probability of individual words shows considerable scattering. In this way, a pure statistical-physics framework is used to describe the probabilities of words. As a by-product, we find that both the empirical two-letter marginal distributions and the interaction-potential distributions follow well-defined statistical laws.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec700396
dc.identifier.issn1099-4300
dc.identifier.urihttps://hdl.handle.net/2445/173736
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e22020179
dc.relation.ispartofEntropy, 2020, vol. 22(2), num. 179
dc.relation.urihttps://doi.org/10.3390/e22020179
dc.rightscc-by (c) Corral, Álvaro et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationEntropia
dc.subject.classificationLingüística matemàtica
dc.subject.classificationDistribució (Teoria de la probabilitat)
dc.subject.classificationProbabilitats
dc.subject.otherEntropy
dc.subject.otherMathematical linguistics
dc.subject.otherDistribution (Probability theory)
dc.subject.otherProbabilities
dc.titleFrom Boltzmann to Zipf through Shannon and Jaynes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
700396.pdf
Mida:
1.15 MB
Format:
Adobe Portable Document Format