Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/216892
Concentration of analytic functions
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
In this work we study different problems concerning the characterization of those measurable sets that, among all sets having a prescribed measure, can capture the largest possible energy fraction of an analytic function in both the Euclidean and hyperbolic settings. In other terms, considering as spaces of analytic functions the Fock space $\mathcal{F}^2\left(\mathbb{C}^n\right)$, with $n \geq 1$, and the Bergman space $\mathcal{A}_\alpha^2(\mathbb{D})$, with $\alpha>1$, we show that given some measurable sets $\Omega \subset \mathbb{C}$ and $\Omega^{\prime} \subset \mathbb{D}$, with some fixed measure $c>0$, the concentration quantities
and
$$
& \max _{F \in \mathcal{F}^2\left(\mathbb{C}^n\right) \backslash\{0\}}\left\{\frac{\int_{\Omega}|F(z)|^2 e^{-\pi|z|^2} d m_{2 n}(z)}{\left.\int_{\mathbb{C}^n}|F(z)|^2 e^{-\pi|z|^2 d m_{2 n}(z)}\right\}}\right. \\
& \max _{f \in \mathcal{A}_\alpha^2(\mathbb{D}) \backslash\{0\}}\left\{\frac{\int_{\Omega^{\prime}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}{\int_{\mathbb{D}}(\alpha-1)|f(z)|^2\left(1-|z|^2\right)^\alpha d m_h(z)}\right\}
$$
are maximized when considering the sets to be a ball (in each respective geometry) with the same measure $c>0$. Specifically, we give a sharp upper bound for each of the previous problems and characterize not only the subsets but also the functions where the maxima are attained.
Descripció
Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Joaquim Ortega Cerdà
Matèries (anglès)
Citació
Col·leccions
Citació
JAMES CANO, Joaquı́n. Concentration of analytic functions. [consulta: 28 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/216892]