Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Institute of Physics (IOP), 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192834

Infinite-derivative linearized gravity in convolutional form

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This article aims to transform the infinite-order Lagrangian density for ghost-free infinite-derivative linearized gravity into non-local form. To achieve it, we use the theory of generalized functions and the Fourier transform in the space of tempered distributions ${\mathcal{S}}^{\prime }$. We show that the non-local operator domain is not defined on the whole functional space but on a subset of it. Moreover, we prove that these functions and their derivatives are bounded in all ${\mathbb{R}}^{3}$ and, consequently, the Riemann tensor is regular and the scalar curvature invariants do not present any spacetime singularity. Finally, we explore what conditions we need to satisfy so that the solutions of the linearized equations of motion exist in ${\mathcal{S}}^{\prime }$.

Citació

Citació

HEREDIA, Carlos, KOLAR, Ivan, LLOSA, Josep, MALDONADO TORRALBA, Francisco josé, MAZUNDAR, Anupam. Infinite-derivative linearized gravity in convolutional form. _Classical and Quantum Gravity_. 2022. Vol. 39, núm. 8, pàgs. 085001. [consulta: 23 de gener de 2026]. ISSN: 0264-9381. [Disponible a: https://hdl.handle.net/2445/192834]

Exportar metadades

JSON - METS

Compartir registre