A Semi-deterministic random walk with resetting

dc.contributor.authorVillarroel, Javier
dc.contributor.authorMontero Torralbo, Miquel
dc.contributor.authorVega, Juan Antonio
dc.date.accessioned2021-07-07T10:48:15Z
dc.date.available2021-07-07T10:48:15Z
dc.date.issued2021-06-28
dc.date.updated2021-07-07T10:48:15Z
dc.description.abstractWe consider a discrete-time random walk $(x_t)$ which at random times is reset to the starting position and performs a deterministic motion between them. We show that the quantity $\Pr \Big( x_{ t+1}= n+1 |x_{t}=n \Big), n\to \infty$ determines if the system is averse, neutral or inclined towards resetting. It also classifica the stationary distribution. Double barrier probabilities, first passage times and the distribution of the escape time from intervals are determined.
dc.format.extent1 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec713032
dc.identifier.issn1099-4300
dc.identifier.pmid34203494
dc.identifier.urihttps://hdl.handle.net/2445/178913
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e23070825
dc.relation.ispartofEntropy, 2021, vol. 23, num. 7, p. 825-1-825-13
dc.relation.urihttps://doi.org/10.3390/e23070825
dc.rightscc-by (c) Villarroel, Javier et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationRutes aleatòries (Matemàtica)
dc.subject.classificationDistribució (Teoria de la probabilitat)
dc.subject.otherRandom walks (Mathematics)
dc.subject.otherDistribution (Probability theory)
dc.titleA Semi-deterministic random walk with resetting
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
713032.pdf
Mida:
327.53 KB
Format:
Adobe Portable Document Format