Sequence information gain based motif analysis

dc.contributor.authorMaynou, J.
dc.contributor.authorPairó, E.
dc.contributor.authorMarco Colás, Santiago
dc.contributor.authorPerera Lluna, Alexandre
dc.date.accessioned2016-09-02T14:42:10Z
dc.date.available2016-09-02T14:42:10Z
dc.date.issued2015-11-09
dc.date.updated2016-09-02T14:42:15Z
dc.description.abstractBackground: The detection of regulatory regions in candidate sequences is essential for the understanding of the regulation of a particular gene and the mechanisms involved. This paper proposes a novel methodology based on information theoretic metrics for finding regulatory sequences in promoter regions. Results: This methodology (SIGMA) has been tested on genomic sequence data for Homo sapiens and Mus musculus. SIGMA has been compared with different publicly available alternatives for motif detection, such as MEME/MAST, Biostrings (Bioconductor package), MotifRegressor, and previous work such Qresiduals projections or information theoretic based detectors. Comparative results, in the form of Receiver Operating Characteristic curves, show how, in 70 % of the studied Transcription Factor Binding Sites, the SIGMA detector has a better performance and behaves more robustly than the methods compared, while having a similar computational time. The performance of SIGMA can be explained by its parametric simplicity in the modelling of the non-linear co-variability in the binding motif positions. Conclusions: Sequence Information Gain based Motif Analysis is a generalisation of a non-linear model of the cis-regulatory sequences detection based on Information Theory. This generalisation allows us to detect transcription factor binding sites with maximum performance disregarding the covariability observed in the positions of the training set of sequences. SIGMA is freely available to the public at http://​b2slab.​upc.​edu.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec655606
dc.identifier.issn1471-2105
dc.identifier.pmid26553056
dc.identifier.urihttps://hdl.handle.net/2445/101507
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1186/s12859-015-0811-x
dc.relation.ispartofBMC Bioinformatics, 2015, vol. 16, num. 377
dc.relation.urihttp://dx.doi.org/10.1186/s12859-015-0811-x
dc.rightscc-by (c) Maynou, J. et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationGenomes
dc.subject.classificationGenètica humana
dc.subject.otherGenomes
dc.subject.otherHuman genetics
dc.titleSequence information gain based motif analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
655606.pdf
Mida:
1.43 MB
Format:
Adobe Portable Document Format