Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Ferre, 2019
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/142747

A Mathematical Model of an Angiogenic Process

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Tubular growth of blood vessels in 2-dimensional space is described in the present study by using a phase field model. In contrast with previous studies, we propose a biomechanical model based on Canham-Helfrich energy, coupled to an angiogenic agent through a spontaneous curvature term. The concentration of this angiogenic agent is static and non uniform, generating a wellde fined gradient through time. The model is very compact consisting of only one partial differential equation, and has the clear advantage of a reduced number of parameters. Following a phase-field methodology, this model allows us to relate sprout growth with the spontaneous curvature term from the Canham-Helfrich model. The importance of the capillary shape at the initial conditions has also been addressed. Additionally, capillaries grown on other growing capillaries have been obtained by combining multiple distributions of growth factor

Descripció

Màster en Nanociència i Nanotecnologia, Facultat de Física, Universitat de Barcelona, Curs: 2018-2019. Tutora: Aurora Hernandez-Machado

Citació

Citació

FERRE TORRES, Josep. A Mathematical Model of an Angiogenic Process. [consulta: 3 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/142747]

Exportar metadades

JSON - METS

Compartir registre