Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/142747
A Mathematical Model of an Angiogenic Process
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
Tubular growth of blood vessels in 2-dimensional space is described in the present study by using a phase field model. In contrast with previous studies, we propose a biomechanical model based on Canham-Helfrich energy, coupled to an angiogenic agent through a spontaneous curvature term. The concentration of this angiogenic agent is static and non uniform, generating a wellde fined gradient through time. The model is very compact consisting of only one partial differential equation, and has the clear advantage of a reduced number of parameters. Following a phase-field methodology, this model allows us to relate sprout growth with the spontaneous curvature term from the Canham-Helfrich model. The importance of the capillary shape at the initial conditions has also been addressed. Additionally, capillaries grown on other growing capillaries have been obtained by combining multiple distributions of growth factor
Descripció
Màster en Nanociència i Nanotecnologia, Facultat de Física, Universitat de Barcelona, Curs: 2018-2019. Tutora: Aurora Hernandez-Machado
Matèries (anglès)
Citació
Col·leccions
Citació
FERRE TORRES, Josep. A Mathematical Model of an Angiogenic Process. [consulta: 3 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/142747]