Asymptotic analysis of stock price densities and implied volatilities in mixed stochastic models  

dc.contributor.authorGulisashvili, Archil
dc.contributor.authorVives i Santa Eulàlia, Josep, 1963-
dc.date.accessioned2015-04-17T09:09:46Z
dc.date.available2015-04-17T09:09:46Z
dc.date.issued2015-03-18
dc.date.updated2015-04-17T09:09:46Z
dc.description.abstractIn this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin con- volution of functions de ned on (0;1), and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-di usion models and stochastic volatility models with jumps. We apply our general results to the Heston model with double exponential jumps, and make a detailed analysis of the asymptotic behavior of the stock price density, the call option pricing function, and the implied volatility in this model. We also obtain similar results for the Heston model with jumps distributed according to the NIG law.
dc.format.extent31 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec650511
dc.identifier.issn1945-497X
dc.identifier.urihttps://hdl.handle.net/2445/65106
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1137/140962255
dc.relation.ispartofSiam Journal On Financial Mathematics, 2015, vol. 6, p. 158-188
dc.relation.urihttp://dx.doi.org/10.1137/140962255
dc.rights(c) Society for Industrial and Applied Mathematics., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMatemàtica financera
dc.subject.classificationEconomia matemàtica
dc.subject.otherBusiness mathematics
dc.subject.otherMathematical economics
dc.titleAsymptotic analysis of stock price densities and implied volatilities in mixed stochastic models  
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
650511.pdf
Mida:
378.06 KB
Format:
Adobe Portable Document Format