Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Ingelmo-Torres, Mercedes et al., 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/127191

Urinary cell microRNA-based prognostic classifier for nonmuscle invasive bladder cancer

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Current prognostic tools for non-muscle invasive bladder cancer (NMIBC) do not have enough discriminative capacity to predict the risk of tumour progression. This study aimed to identify urinary cell microRNAs that may be useful as non-invasive predictive biomarkers of tumour progression in NMIBC patients. To this end, 210 urine samples from NMIBC patients were included in the study. RNA was extracted from urinary cells and expression of 8 microRNAs, previously described by our group, was analysed by quantitative PCR. A tumour progression predicting model was developed by Cox regression analysis and validated by bootstrapping. Regression analysis identified miR-140-5p and miR-92a-3p as independent predictors of tumour progression. The risk score derived from the model containing these two microRNAs was able to discriminate between two groups with a highly significant different probability of tumour progression (HR, 5.204; p<0.001) which was maintained when patients were stratified according to tumour risk. The algorithm was also able to identify two groups with different cancer-specific survival (HR, 3.879; p=0.021). Although the data needs to be externally validated, miRNA analysis in urine appears to be a valuable prognostic tool in NMIBC patients.

Citació

Citació

INGELMO-TORRES, Mercedes, LOZANO SALVATELLA, Juan josé, IZQUIERDO REYES, Laura, CARRION, Albert, COSTA, Meritxell, GOMEZ, Lidia, RIBAL, María josé, ALCARAZ ASENSIO, Antonio, MENGUAL BRICHS, Lourdes. Urinary cell microRNA-based prognostic classifier for nonmuscle invasive bladder cancer. _Oncotarget_. 2017. Vol. 8, núm. 11, pàgs. 18238-18247. [consulta: 21 de gener de 2026]. ISSN: 1949-2553. [Disponible a: https://hdl.handle.net/2445/127191]

Exportar metadades

JSON - METS

Compartir registre