Operative mechanism of hole-assisted negative charge motion in ground states of radical-anion molecular wires

dc.contributor.authorFranco, Carlos
dc.contributor.authorMayorga Burrezo, Paula
dc.contributor.authorLloveras, Vega
dc.contributor.authorCaballero, Ruben
dc.contributor.authorAlcón Rovira, Isaac
dc.contributor.authorBromley, Stefan Thomas
dc.contributor.authorMas Torrent, Marta
dc.contributor.authorLanga, Fernando
dc.contributor.authorLópez Navarrete, Juan T.
dc.contributor.authorRovira i Angulo, Concepció
dc.contributor.authorCasado, Juan
dc.contributor.authorVeciana, Jaume
dc.date.accessioned2018-10-01T16:57:41Z
dc.date.available2018-10-01T16:57:41Z
dc.date.issued2017-01-18
dc.date.updated2018-10-01T16:57:41Z
dc.description.abstractCharge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 angstrom, The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec673207
dc.identifier.issn0002-7863
dc.identifier.pmid27997166
dc.identifier.urihttps://hdl.handle.net/2445/124977
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/jacs.6b08649
dc.relation.ispartofJournal of the American Chemical Society, 2017, vol. 139, num. 2, p. 686-692
dc.relation.urihttps://doi.org/10.1021/jacs.6b08649
dc.rights(c) American Chemical Society , 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationTransferència de càrrega
dc.subject.classificationTransport d'electrons
dc.subject.classificationCinètica química
dc.subject.classificationEspectroscòpia Raman
dc.subject.classificationQuímica quàntica
dc.subject.otherCharge transfer
dc.subject.otherElectron transport
dc.subject.otherChemical kinetics
dc.subject.otherRaman spectroscopy
dc.subject.otherQuantum chemistry
dc.titleOperative mechanism of hole-assisted negative charge motion in ground states of radical-anion molecular wires
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
673207.pdf
Mida:
716.49 KB
Format:
Adobe Portable Document Format