Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/32271

Regression-based techniques for statistical decision making in single-case designs

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.

Citació

Citació

MANOLOV, Rumen, ARNAU GRAS, Jaume, SOLANAS PÉREZ, Antonio, BONO CABRÉ, Roser. Regression-based techniques for statistical decision making in single-case designs. _Psicothema_. 2010. Vol. 22, núm. 4, pàgs. 1026-1032. [consulta: 27 de gener de 2026]. ISSN: 0214-9915. [Disponible a: https://hdl.handle.net/2445/32271]

Exportar metadades

JSON - METS

Compartir registre