Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/216598

Jordan property for homeomorphism groups and almost fixed point property

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We study properties of continuous finite group actions on topological manifolds that hold true, for any finite group action, after possibly passing to a subgroup of index bounded above by a constant depending only on the manifold. These include the Jordan property, the almost fixed point property, as well as bounds on the discrete degree of symmetry. Most of our results apply to manifolds satisfying some restriction such as having nonzero Euler characteristic or having the integral homology of a sphere. For an arbitrary topological manifold $X$ such that $H_*(X ; \mathbb{Z})$ is finitely generated, we prove the existence of a constant $C$ with the property that for any continuous action of a finite group $G$ on $X$ such that every $g \in G$ fixes at least one point of $X$, there is a subgroup $H \leq G$ satisfying $[G: H] \leq C$ and a point $x \in X$ which is fixed by all elements of $H$.

Citació

Citació

MUNDET I RIERA, Ignasi. Jordan property for homeomorphism groups and almost fixed point property. _Publicacions Matemàtiques_. 2024. Vol. 68, núm. 2, pàgs. 545-557. [consulta: 20 de gener de 2026]. ISSN: 0214-1493. [Disponible a: https://hdl.handle.net/2445/216598]

Exportar metadades

JSON - METS

Compartir registre