Factorization and Malleability of RSA Moduli, and Counting Points on Elliptic Curves Modulo N

dc.contributor.authorDieulefait, L. V. (Luis Victor)
dc.contributor.authorJimenez Urroz, Jorge
dc.date.accessioned2021-04-12T13:52:58Z
dc.date.available2021-04-12T13:52:58Z
dc.date.issued2020-11-27
dc.date.updated2021-04-12T13:52:58Z
dc.description.abstractIn this paper we address two different problems related with the factorization of an RSA (Rivest-Shamir-Adleman cryptosystem) modulus N. First we show that factoring is equivalent, in deterministic polynomial time, to counting points on a pair of twisted Elliptic curves modulo N. The second problem is related with malleability. This notion was introduced in 2006 by Pailler and Villar, and deals with the question of whether or not the factorization of a given number N becomes substantially easier when knowing the factorization of another one N′ relatively prime to N. Despite the efforts done up to now, a complete answer to this question was unknown. Here we settle the problem affirmatively. To construct a particular N′ that helps the factorization of N, we use the number of points of a single elliptic curve modulo N. Coppersmith's algorithm allows us to go from the factors of N′ to the factors of N in polynomial time.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec709375
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/2445/176130
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/math8122126
dc.relation.ispartofMathematics, 2020, vol. 8, num. 12, p. 2126
dc.relation.urihttps://doi.org/10.3390/math8122126
dc.rightscc-by (c) Dieulefait, L. V. (Luis Victor) et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFactorització (Matemàtica)
dc.subject.classificationAlgorismes
dc.subject.otherFactorization (Mathematics)
dc.subject.otherAlgorithms
dc.titleFactorization and Malleability of RSA Moduli, and Counting Points on Elliptic Curves Modulo N
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
709375.pdf
Mida:
237.58 KB
Format:
Adobe Portable Document Format