Apery and micro-invariants of a one-dimensional Cohen-Macaulay local ring and invariants of its tangent cone
| dc.contributor.author | Cortadellas Benítez, Teresa | |
| dc.contributor.author | Zarzuela, Santiago | |
| dc.date.accessioned | 2023-07-06T08:22:57Z | |
| dc.date.available | 2023-07-06T08:22:57Z | |
| dc.date.issued | 2011-02-15 | |
| dc.date.updated | 2023-07-06T08:22:57Z | |
| dc.description.abstract | Given a one-dimensional equicharacteristic Cohen-Macaulay local ring $A$, Juan Elias introduced in 2001 the set of micro-invariants of $A$ in terms of the first neighborhood ring. On the other hand, if $A$ is a one-dimensional complete equicharacteristic and residually rational domain, Valentina Barucci and Ralf Fröberg defined in 2006 a new set of invariants in terms of the Apery set of the value semigroup of $A$. We give a new interpretation for these sets of invariants that allow to extend their definition to any onedimensional Cohen-Macaulay ring. We compare these two sets of invariants with the one introduced by the authors for the tangent cone of a one-dimensional CohenMacaulay local ring and give explicit formulas relating them. We show that, in fact, they coincide if and only if the tangent cone $G(A)$ is Cohen-Macaulay. Some explicit computations will also be given. | |
| dc.format.extent | 20 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 581557 | |
| dc.identifier.issn | 0021-8693 | |
| dc.identifier.uri | https://hdl.handle.net/2445/200400 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.jalgebra.2010.08.002 | |
| dc.relation.ispartof | Journal of Algebra, 2011, vol. 328, num. 1, p. 94-113 | |
| dc.relation.uri | https://doi.org/10.1016/j.jalgebra.2010.08.002 | |
| dc.rights | (c) Elsevier, 2011 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Àlgebra commutativa | |
| dc.subject.classification | Anells locals | |
| dc.subject.other | Commutative algebra | |
| dc.subject.other | Local rings | |
| dc.title | Apery and micro-invariants of a one-dimensional Cohen-Macaulay local ring and invariants of its tangent cone | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1