Phase-field model of Hele-Shaw flows in the high-viscosity contrast regime
| dc.contributor.author | Hernández Machado, Aurora | cat |
| dc.contributor.author | Lacasta Palacio, Ana María | cat |
| dc.contributor.author | Mayoral, E. | cat |
| dc.contributor.author | Corvera Poiré, Eugenia | cat |
| dc.date.accessioned | 2011-07-07T12:51:08Z | |
| dc.date.available | 2011-07-07T12:51:08Z | |
| dc.date.issued | 2003 | |
| dc.description.abstract | A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger competition with the final evolution to a steady-state finger. | eng |
| dc.format.extent | 6 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 561750 | |
| dc.identifier.issn | 1539-3755 | |
| dc.identifier.uri | https://hdl.handle.net/2445/18713 | |
| dc.language.iso | eng | eng |
| dc.publisher | The American Physical Society | eng |
| dc.relation.isformatof | Reproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.68.046310 | cat |
| dc.relation.ispartof | Physical Review E, 2003, vol. 68, núm. 4, p. 046310-1-046310-6 | |
| dc.relation.uri | http://dx.doi.org/10.1103/PhysRevE.68.046310 | |
| dc.rights | (c) The American Physical Society, 2003 | eng |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Física Quàntica i Astrofísica) | |
| dc.subject.classification | Dinàmica de fluids | cat |
| dc.subject.classification | Viscositat | cat |
| dc.subject.other | Fluid dynamics | eng |
| dc.subject.other | Viscosity | eng |
| dc.title | Phase-field model of Hele-Shaw flows in the high-viscosity contrast regime | eng |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1