Which finite groups act smoothly on a given 4-manifold?

dc.contributor.authorMundet i Riera, Ignasi
dc.contributor.authorSáez Calvo, Carlos
dc.date.accessioned2023-03-17T10:26:05Z
dc.date.available2023-03-17T10:26:05Z
dc.date.issued2021-12-02
dc.date.updated2023-03-17T10:26:05Z
dc.description.abstractWe prove that for any closed smooth 4-manifold $X$ there exists a constant $C$ with the property that each finite subgroup $G<\operatorname{Diff}(X)$ has a subgroup $N$ which is abelian or nilpotent of class 2 , and which satisfies $[G: N] \leq C$. We give sufficient conditions on $X$ for $\operatorname{Diff}(X)$ to be Jordan, meaning that there exists a constant $C$ such that any finite subgroup $G<\operatorname{Diff}(X)$ has an abelian subgroup $A$ satisfying $[G: A] \leq C$. Some of these conditions are homotopical, such as having nonzero Euler characteristic or nonzero signature, others are geometric, such as the absence of embedded tori of arbitrarily large self-intersection arising as fixed point components of periodic diffeomorphisms. Relying on these results, we prove that: (1) the symplectomorphism group of any closed symplectic 4-manifold is Jordan, and (2) the automorphism group of any almost complex closed 4-manifold is Jordan.
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec718118
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/195522
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/tran/8518
dc.relation.ispartofTransactions of the American Mathematical Society, 2021, vol. 375, num. 2, p. 1207-1260
dc.relation.urihttps://doi.org/10.1090/tran/8518
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTransformacions (Matemàtica)
dc.subject.classificationVarietats (Matemàtica)
dc.subject.classificationTopologia de baixa dimensió
dc.subject.classificationVarietats simplèctiques
dc.subject.otherTransformations (Mathematics)
dc.subject.otherManifolds (Mathematics)
dc.subject.otherLow-dimensional topology
dc.subject.otherSymplectic manifolds
dc.titleWhich finite groups act smoothly on a given 4-manifold?
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
718118.pdf
Mida:
596.64 KB
Format:
Adobe Portable Document Format