Which finite groups act smoothly on a given 4-manifold?
| dc.contributor.author | Mundet i Riera, Ignasi | |
| dc.contributor.author | Sáez Calvo, Carlos | |
| dc.date.accessioned | 2023-03-17T10:26:05Z | |
| dc.date.available | 2023-03-17T10:26:05Z | |
| dc.date.issued | 2021-12-02 | |
| dc.date.updated | 2023-03-17T10:26:05Z | |
| dc.description.abstract | We prove that for any closed smooth 4-manifold $X$ there exists a constant $C$ with the property that each finite subgroup $G<\operatorname{Diff}(X)$ has a subgroup $N$ which is abelian or nilpotent of class 2 , and which satisfies $[G: N] \leq C$. We give sufficient conditions on $X$ for $\operatorname{Diff}(X)$ to be Jordan, meaning that there exists a constant $C$ such that any finite subgroup $G<\operatorname{Diff}(X)$ has an abelian subgroup $A$ satisfying $[G: A] \leq C$. Some of these conditions are homotopical, such as having nonzero Euler characteristic or nonzero signature, others are geometric, such as the absence of embedded tori of arbitrarily large self-intersection arising as fixed point components of periodic diffeomorphisms. Relying on these results, we prove that: (1) the symplectomorphism group of any closed symplectic 4-manifold is Jordan, and (2) the automorphism group of any almost complex closed 4-manifold is Jordan. | |
| dc.format.extent | 54 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 718118 | |
| dc.identifier.issn | 0002-9947 | |
| dc.identifier.uri | https://hdl.handle.net/2445/195522 | |
| dc.language.iso | eng | |
| dc.publisher | American Mathematical Society (AMS) | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1090/tran/8518 | |
| dc.relation.ispartof | Transactions of the American Mathematical Society, 2021, vol. 375, num. 2, p. 1207-1260 | |
| dc.relation.uri | https://doi.org/10.1090/tran/8518 | |
| dc.rights | cc-by-nc-nd (c) American Mathematical Society (AMS), 2021 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Transformacions (Matemàtica) | |
| dc.subject.classification | Varietats (Matemàtica) | |
| dc.subject.classification | Topologia de baixa dimensió | |
| dc.subject.classification | Varietats simplèctiques | |
| dc.subject.other | Transformations (Mathematics) | |
| dc.subject.other | Manifolds (Mathematics) | |
| dc.subject.other | Low-dimensional topology | |
| dc.subject.other | Symplectic manifolds | |
| dc.title | Which finite groups act smoothly on a given 4-manifold? | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1