Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/221771
Selecció d'autoencoders amb validació creuada
Títol de la revista
Autors
ISSN de la revista
Títol del volum
Resum
Aquest treball de fi de grau se centra en l'ús d autoencoders per a la reducció de dimensions i l'anàlisi de la reconstrucció de les dades. Els autoencoders són una tècnica d'aprenentatge automàtic que permet codificar i descodificar dades, preservant la informació essencial mentre se'n redueix la dimensió. L'estudi investiga la determinació del nombre òptim de nodes a la capa oculta mitjançant la validació creuada i compara diferents mètriques com ara són l'AIC, l'R2 i el SSE per a la selecció de models. Utilitzant diferents bases de dades, el treball avalua l'efectivitat dels autoencoders a la reconstrucció d'aquestes. S'implementa el model utilitzant el paquet Keras, destacant-ne la capacitat per crear xarxes neuronals avançades i entrenar-les eficientment. Els resultats mostren que és possible reduir significativament la dimensió de les dades sense una gran pèrdua d'informació, optimitzant el balanç entre variabilitat explicada i la suma dels errors quadràtics.
Descripció
Treballs Finals de Grau en Estadística UB-UPC, Facultat d'Economia i Empresa (UB) i Facultat de Matemàtiques i Estadística (UPC), Curs: 2023-2024, Tutor: Ferran Reverter Comes
Matèries (anglès)
Citació
Citació
SEGURA RAMIRO, Carlos. Selecció d'autoencoders amb validació creuada. [consulta: 3 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/221771]