Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/144202

Soft Communities in Similarity Space

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The S1 model has been central in the development of the field of network geometry. It places nodes in a similarity space and connects them with a likelihood depending on an effective distance which combines similarity and popularity dimensions, with popularity directly related to the degrees of the nodes. The S1 model has been mainly studied in its homogeneous regime, in which angular coordinates are independently and uniformly scattered on the circle. We now investigate if the model can generate networks with targeted topological features and soft communities, that is, inhomogeneous angular distributions. To that end, hidden degrees must depend on angular coordinates, and we propose a method to estimate them. We conclude that the model can be topologically invariant with respect to the soft-community structure. Our results expand the scope of the model beyond the independent hidden variables limit and can have an important impact in the embedding of real-world networks.

Matèries (anglès)

Citació

Citació

GARCÍA PÉREZ, Guillermo, SERRANO MORAL, Ma. ángeles (maría ángeles), BOGUÑÁ, Marián. Soft Communities in Similarity Space. _Journal of Statistical Physics_. 2018. Vol. 173, núm. 3-4, pàgs. 775-782. [consulta: 24 de gener de 2026]. ISSN: 0022-4715. [Disponible a: https://hdl.handle.net/2445/144202]

Exportar metadades

JSON - METS

Compartir registre