Machining tool identification utilizing temporal 3D point clouds

dc.contributor.authorZoumpekas, Thanasis
dc.contributor.authorLeutgeb, Alexander
dc.contributor.authorPuig Puig, Anna
dc.contributor.authorSalamó Llorente, Maria
dc.date.accessioned2023-04-14T08:32:35Z
dc.date.available2023-04-14T08:32:35Z
dc.date.issued2023-03-25
dc.date.updated2023-04-14T08:32:35Z
dc.description.abstractThe manufacturing domain is regarded as one of the most important engineering areas. Recently, smart manufacturing merges the use of sensors, intelligent controls, and software to manage each stage in the manufacturing lifecycle. Additionally, the increasing use of point clouds to model real products and machining tools in a virtual space facilitates the more accurate monitoring of the end-to-end production lifecycle. Thus, the conjunction of both, intelligent methods and more accurate 3D models allows the prediction of uncertainties and anomalies in the manufacturing process as well as reduces the final production costs. However, the high complexity of the geometrical structures defined by point clouds and the high accuracy required by the Quality Assurance/Quality control parameters during the process, pave the way for continuous improvements in smart manufacturing methods. This paper addresses a comprehensive analysis of machining tool identification utilizing temporal point cloud data. Specifically, we deal with the identification of machining tools from temporal 3D point clouds. To do that, we propose a process to construct and train intelligent models utilizing such data. Moreover, in our case study, we provide the research community with two labeled temporal 3D point cloud datasets, and we experiment with the pioneering PointNet neural network and three of its variants demonstrating an accuracy of 95% in the identification of the utilized machining tools in a machining process. Finally, we provide a prototype end-to-end intelligent system of machining tool identification.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec733279
dc.identifier.issn0956-5515
dc.identifier.urihttps://hdl.handle.net/2445/196783
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s10845-023-02093-5
dc.relation.ispartofJournal of Intelligent Manufacturing, 2023
dc.relation.urihttps://doi.org/10.1007/s10845-023-02093-5
dc.rightscc by (c) Thanasis Zoumpekas et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationFabricació
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherMachine learning
dc.subject.otherManufacturing processes
dc.subject.otherNeural networks (Computer science)
dc.titleMachining tool identification utilizing temporal 3D point clouds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
733279.pdf
Mida:
1.58 MB
Format:
Adobe Portable Document Format