Factorization of bivariate sparse polynomials

dc.contributor.authorAmoroso, Francesco
dc.contributor.authorSombra, Martín
dc.date.accessioned2020-07-16T07:05:13Z
dc.date.available2020-07-16T07:05:13Z
dc.date.issued2019-09-19
dc.date.updated2020-07-16T07:05:13Z
dc.description.abstractWe prove a function field analogue of a conjecture of Schinzel on the factorization of univariate polynomials over the rationals. We derive from it a finiteness theorem for the irreducible factorizations of the bivariate Laurent polynomials in families with a fixed set of complex coefficients and varying exponents. Roughly speaking, this result shows that the truly bivariate irreducible factors of these sparse Laurent polynomials are also sparse. The proofs are based on a variant of the toric Bertini theorem due to Zannier and to Fuchs, Mantova and Zannier.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702668
dc.identifier.issn0065-1036
dc.identifier.urihttps://hdl.handle.net/2445/168802
dc.language.isoeng
dc.publisherInstytut Matematyczny Polskiej Akademii Nauk
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.4064/aa171219-18-12
dc.relation.ispartofActa Arithmetica, 2019, vol. 191, p. 361-381
dc.relation.urihttps://doi.org/10.4064/aa171219-18-12
dc.rights(c) Instytut Matematyczny Polskiej Akademii Nauk, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationPolinomis
dc.subject.classificationÀlgebra commutativa
dc.subject.classificationCossos algebraics
dc.subject.otherPolynomials
dc.subject.otherCommutative algebra
dc.subject.otherAlgebraic fields
dc.titleFactorization of bivariate sparse polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702668.pdf
Mida:
370.68 KB
Format:
Adobe Portable Document Format