A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations

dc.contributor.authorGarrucho, Lidia
dc.contributor.authorKushibar, Kaisar
dc.contributor.authorReidel, Claire-Anne
dc.contributor.authorJoshi, Smriti
dc.contributor.authorOsuala, Richard
dc.contributor.authorTsirikoglou, Apostolia
dc.contributor.authorBobowicz, Maciej
dc.contributor.authorRiego, Javier del
dc.contributor.authorCatanese, Alesandro
dc.contributor.authorGwoździewicz, Katarzyna
dc.contributor.authorCosaka, Maria Laura
dc.contributor.authorAbo-Elhoda, Pasant M.
dc.contributor.authorTantawy, Sara W.
dc.contributor.authorSakrana, Shorouq S.
dc.contributor.authorShawky-Abdelfatah, Norhan O.
dc.contributor.authorAbdo-Salem, Amr Muhammad
dc.contributor.authorKozana, Androniki
dc.contributor.authorDivjak, Eugen
dc.contributor.authorIvanac, Gordana
dc.contributor.authorNikiforaki, Katerina
dc.contributor.authorKlontzas, Michail E.
dc.contributor.authorGarcía Dosdá, Rosa
dc.contributor.authorGulsun-Akpinar, Meltem
dc.contributor.authorLafcı, Oğuz
dc.contributor.authorMann, Ritse
dc.contributor.authorMartín-Isla, Carlos
dc.contributor.authorPrior, Fred
dc.contributor.authorMarias, Kostas
dc.contributor.authorStarmans, Martijn P. A.
dc.contributor.authorStrand, Fredrik
dc.contributor.authorDíaz, Oliver
dc.contributor.authorIgual Muñoz, Laura
dc.contributor.authorLekadir, Karim, 1977-
dc.date.accessioned2025-05-02T09:10:34Z
dc.date.available2025-05-02T09:10:34Z
dc.date.issued2025-03-19
dc.date.updated2025-05-02T09:10:34Z
dc.description.abstract<span style="color:rgb( 34 , 34 , 34 )">Artificial Intelligence (AI) research in breast cancer Magnetic Resonance Imaging (MRI) faces challenges due to limited expert-labeled segmentations. To address this, we present a multicenter dataset of 1506 pre-treatment T1-weighted dynamic contrast-enhanced MRI cases, including expert annotations of primary tumors and non-mass-enhanced regions. The dataset integrates imaging data from four collections in The Cancer Imaging Archive (TCIA), where only 163 cases with expert segmentations were initially available. To facilitate the annotation process, a deep learning model was trained to produce preliminary segmentations for the remaining cases. These were subsequently corrected and verified by 16 breast cancer experts (averaging 9 years of experience), creating a fully annotated dataset. Additionally, the dataset includes 49 harmonized clinical and demographic variables, as well as pre-trained weights for a baseline nnU-Net model trained on the annotated data. This resource addresses a critical gap in publicly available breast cancer datasets, enabling the development, validation, and benchmarking of advanced deep learning models, thus driving progress in breast cancer diagnostics, treatment response prediction, and personalized care.</span>
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec758009
dc.identifier.issn2052-4463
dc.identifier.urihttps://hdl.handle.net/2445/220770
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41597-025-04707-4
dc.relation.ispartofScientific Data, 2025, vol. 12
dc.relation.urihttps://doi.org/https://doi.org/10.1038/s41597-025-04707-4
dc.rightscc-by (c) Garrucho, L et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationCàncer de mama
dc.subject.classificationIntel·ligència artificial
dc.subject.otherMagnetic resonance imaging
dc.subject.otherBreast cancer
dc.subject.otherArtificial intelligence
dc.titleA large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
892269.pdf
Mida:
3.11 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: