Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/213325
Parametric learning of probabilistic graphical models from multi-sourced data
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In Machine Learning, it is common to encounter scenarios where learning a model from a scarce dataset may not be feasible. In these cases, data from multiple different sources have to be collected. When data from multiple sources is distributed differently, the benefit of a bigger sample size trades off with the difficulty to model together data sampled from different distributions. A similar framework is presented in fairness analysis, where subpopulations defined by the protected attributes might show different underlying distributios. In this work, we study the use of hierarchical Bayesian methods to learn Bayesian network (BN) models from all the available data while being aware of the presence of unequally distributed data sources. We propose a variation of a previous hierarchical Bayesian approach for learning BN parameters which naturally accommodates into the framework of
BNs. The comparison with the state-of-the-art methods is done in two dimensions: the amount of samples available to train a model, and the divergence of the underlying distribution of the different data sources. Experimental results suggest that our model is competitive when data is scarce and the multiple sources are distributed differently.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Jerónimo Hernández-González i Aritz Pérez Martínez
Matèries (anglès)
Citació
Citació
CATALÁN CEREZO, David. Parametric learning of probabilistic graphical models from multi-sourced data. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/213325]