Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Talavera Martínez et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172095

Topic modelling for routine discovery from egocentric photo-streams

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Developing tools to understand and visualize lifestyle is of high interest when addressing the improvement of habits and well-being of people. Routine, defined as the usual things that a person does daily, helps describe the individuals' lifestyle. With this paper, we are the first ones to address the development of novel tools for automatic discovery of routine days of an individual from his/her egocentric images. In the proposed model, sequences of images are firstly characterized by semantic labels detected by pre-trained CNNs. Then, these features are organized in temporal-semantic documents to later be embedded into a topic models space. Finally, Dynamic-Time-Warping and Spectral-Clustering methods are used for final day routine/non-routine discrimination. Moreover, we introduce a new EgoRoutine-dataset, a collection of 104 egocentric days with more than 100.000 images recorded by 7 users. Results show that routine can be discovered and behavioural patterns can be observed.

Matèries (anglès)

Citació

Citació

TALAVERA MARTÍNEZ, Estefanía, WUERICH, Carolin, PETKOV, Nicolai, RADEVA, Petia. Topic modelling for routine discovery from egocentric photo-streams. _Pattern Recognition_. 2020. Vol. 104. [consulta: 24 de gener de 2026]. ISSN: 0031-3203. [Disponible a: https://hdl.handle.net/2445/172095]

Exportar metadades

JSON - METS

Compartir registre