p13CMFA: Parsimonious 13C metabolic flux analysis

dc.contributor.authorFoguet Coll, Carles
dc.contributor.authorJayaraman, Anusha
dc.contributor.authorMarin, Silvia
dc.contributor.authorSelivanov, Vitaly
dc.contributor.authorMoreno, Pablo
dc.contributor.authorMesseguer i Peypoch, Ramon
dc.contributor.authorAtauri, Pedro de
dc.contributor.authorCascante i Serratosa, Marta
dc.date.accessioned2020-01-29T12:15:47Z
dc.date.available2020-01-29T12:15:47Z
dc.date.issued2019-09-06
dc.date.updated2020-01-29T12:15:48Z
dc.description.abstractDeciphering the mechanisms of regulation of metabolic networks subjected to perturbations, including disease states and drug-induced stress, relies on tracing metabolic fluxes. One of the most informative data to predict metabolic fluxes are 13C based metabolomics, which provide information about how carbons are redistributed along central carbon metabolism. Such data can be integrated using 13C Metabolic Flux Analysis (13C MFA) to provide quantitative metabolic maps of flux distributions. However, 13C MFA might be unable to reduce the solution space towards a unique solution either in large metabolic networks or when small sets of measurements are integrated. Here we present parsimonious 13C MFA (p13CMFA), an approach that runs a secondary optimization in the 13C MFA solution space to identify the solution that minimizes the total reaction flux. Furthermore, flux minimization can be weighted by gene expression measurements allowing seamless integration of gene expression data with 13C data. As proof of concept, we demonstrate how p13CMFA can be used to estimate intracellular flux distributions from 13C measurements and transcriptomics data. We have implemented p13CMFA in Iso2Flux, our in-house developed isotopic steady-state 13C MFA software. The source code is freely available on GitHub (https://github.com/cfoguet/iso2flux/releases/tag/0.7.2).
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec691814
dc.identifier.issn1553-734X
dc.identifier.pmid31490922
dc.identifier.urihttps://hdl.handle.net/2445/148831
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pcbi.1007310
dc.relation.ispartofPLoS Computational Biology, 2019, vol. 15, num. 9, p. e1007310
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/654241/EU//PhenoMeNal
dc.relation.urihttps://doi.org/10.1371/journal.pcbi.1007310
dc.rightscc-by (c) Foguet, Carles et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationMetabolisme dels medicaments
dc.subject.classificationExpressió gènica
dc.subject.otherDrugs metabolism
dc.subject.otherGene expression
dc.titlep13CMFA: Parsimonious 13C metabolic flux analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
691814.pdf
Mida:
2.24 MB
Format:
Adobe Portable Document Format