Dealing with missing data blocks in Multivariate Curve Resolution. Towards a general framework based on a single factorization model.

dc.contributor.authorGómez Sánchez, Adrián
dc.contributor.authorRuckebusch, Cyril
dc.contributor.authorTauler Ferré, Romà
dc.contributor.authorJuan Capdevila, Anna de
dc.date.accessioned2025-12-04T16:47:30Z
dc.date.available2025-12-04T16:47:30Z
dc.date.issued2024
dc.date.updated2025-12-04T16:47:30Z
dc.description.abstractMultivariate Curve Resolution (MCR) deals with the mixture analysis problem by decomposing a data set with mixed information into a bilinear model of pure component contributions. Multiset analysis deals with fused data blocks linked to related experiments and/or techniques. Nevertheless, experiments and techniques often show differences that lead, when concatenated, to incomplete multisets with missing blocks of information. Incomplete multisets aim at incorporating all available information in the initial blocks of measurements but require adapted algorithms to be properly handled. This work presents the evolution of the different perspectives adopted to analyze incomplete multisets with advantages and drawbacks. Finally, a new methodology is proposed that adapts to any data configuration with missing entries without the need to perform data imputation or multiple factorizations. The new method adapts very well to analytical applications where the blocks of information to be fused are not acquired in equivalent experimental conditions.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec749685
dc.identifier.issn0165-9936
dc.identifier.urihttps://hdl.handle.net/2445/224688
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.trac.2024.117869
dc.relation.ispartofTRAC-Trends in Analytical Chemistry, 2024, vol. 179
dc.relation.urihttps://doi.org/10.1016/j.trac.2024.117869
dc.rightscc-by-nc (c) Gómez Sánchez, Adrián et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.classificationQuimiometria
dc.subject.classificationAnàlisi multivariable
dc.subject.otherChemometrics
dc.subject.otherMultivariate analysis
dc.titleDealing with missing data blocks in Multivariate Curve Resolution. Towards a general framework based on a single factorization model.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
864229.pdf
Mida:
8.25 MB
Format:
Adobe Portable Document Format